Reliably download historical market data from with Python
Ever since Yahoo decommissioned their historical data API, Python developers looked for a reliable workaround. As a result, my library, yfinance, gained momentum and was downloaded over 100,000 enjoys 300k+ installs per month, acording to PyPi!
Legal note:
Yahoo!, Y!Finance, and Yahoo! finance are registered trademarks of Yahoo, Inc.
yfinance is not affiliated, endorsed, or vetted by Yahoo, Inc. It's an open-source tool that uses Yahoo's publicly available APIs, and is intended for research and educational purposes.
You should refer to Yahoo!'s terms of use (here, here, and here) for details on your rights to use the actual data downloaded. Remember - the Yahoo! finance API is intended for personal use only.
fix-yahoo-finance
aimed to offer a temporary fix to the problem by getting data from Yahoo! Finance and returning it in the same format as pandas_datareader's get_data_yahoo()
, thus keeping the code changes in exisiting software to minimum.
The problem was, that this hack was a bit unreliable, causing data to not being downloaded and required developers to force session re-initialization and re-fetching of cookies, by calling yf.get_yahoo_crumb(force=True)
.
yfinance is a complete re-write of the libray, offering a reliable method of downloading historical market data from Yahoo! Finance's API, up to 1 minute granularity, in a more Pythonic way.
Introducing the Ticker()
module:
The Ticker()
module allows you get market and meta data for a security, using a Pythonic way:
import yfinance as yf
msft = yf.Ticker("MSFT")
print(msft)
"""
returns
<yfinance.Ticker object at 0x1a1715e898>
"""
# get stock info
msft.info
"""
returns:
{
'quoteType': 'EQUITY',
'quoteSourceName': 'Nasdaq Real Time Price',
'currency': 'USD',
'shortName': 'Microsoft Corporation',
'exchangeTimezoneName': 'America/New_York',
...
'symbol': 'MSFT'
}
"""
# get historical market data
msft.history(period="max")
"""
returns:
Open High Low Close Volume Dividends Splits
Date
1986-03-13 0.06 0.07 0.06 0.07 1031788800 0.0 0.0
1986-03-14 0.07 0.07 0.07 0.07 308160000 0.0 0.0
...
2019-04-15 120.94 121.58 120.57 121.05 15792600 0.0 0.0
2019-04-16 121.64 121.65 120.10 120.77 14059700 0.0 0.0
"""
# show actions (dividends, splits)
msft.actions
"""
returns:
Dividends Splits
Date
1987-09-21 0.00 2.0
1990-04-16 0.00 2.0
...
2018-11-14 0.46 0.0
2019-02-20 0.46 0.0
"""
# show dividends
msft.dividends
"""
returns:
Date
2003-02-19 0.08
2003-10-15 0.16
...
2018-11-14 0.46
2019-02-20 0.46
"""
# show splits
msft.splits
"""
returns:
Date
1987-09-21 2.0
1990-04-16 2.0
...
1999-03-29 2.0
2003-02-18 2.0
"""
Available paramaters for the history()
method are:
- period: data period to download (Either Use period parameter or use start and end) Valid periods are: 1d, 5d, 1mo, 3mo, 6mo, 1y, 2y, 5y, 10y, ytd, max
- interval: data interval (intraday data cannot extend last 60 days) Valid intervals are: 1m, 2m, 5m, 15m, 30m, 60m, 90m, 1h, 1d, 5d, 1wk, 1mo, 3mo
- start: If not using period - Download start date string (YYYY-MM-DD) or datetime.
- end: If not using period - Download end date string (YYYY-MM-DD) or datetime.
- prepost: Include Pre and Post market data in results? (Default is
False
) - auto_adjust: Adjust all OHLC automatically? (Default is
True
) - actions: Download stock dividends and stock splits events? (Default is
True
)
Mass download of market data:
You can also download data for multiple tickers at once, like before.
import yfinance as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30")
To access the closing price data for SPY, you should use: data['Close']['SPY']
.
If, however, you want to group data by Symbol, use:
import yfinance as yf
data = yf.download("SPY AAPL", start="2017-01-01", end="2017-04-30",
group_by="ticker")
To access the closing price data for SPY, you should use: data['SPY']['Close']
.
The download()
method accepts an additional parameter - threads
for faster completion when downloading a lot of symbols at once.
* NOTE: To keep compatibility with older versions, auto_adjust defaults to False
when using mass-download.
Using pandas_datareader:
If your legacy code is using pandas_datareader
and you wand to keep the code changes to minimum, you can simply call the override method and keep your code as it was:
from pandas_datareader import data as pdr
import yfinance as yf
yf.pdr_override() # <== that's all it takes :-)
# download dataframe using pandas_datareader
data = pdr.get_data_yahoo("SPY", start="2017-01-01", end="2017-04-30")
To install/upgrade yfinance using pip, run:
$ pip install yfinance --upgrade --no-cache-dir
The Github repository has more information and issue tracking.
Enjoy!
Updated on 17 April 2019.
For the latest version and comments, please see:
https://aroussi.com/post/python-yahoo-finance